Abstract

We integrate ambipolar quantum dots in silicon fin field-effect transistors using exclusively standard complementary metal-oxide-semiconductor fabrication techniques. We realize ambipolarity by replacing conventional highly doped source and drain electrodes by a metallic nickel silicide with the Fermi level close to the silicon mid-gap position. Such devices operate in a dual mode, as either a classical field-effect or single-electron transistor. We implement a classical logic NOT gate at low temperature by tuning two interconnected transistors into opposite polarities. In the quantum regime, we demonstrate stable quantum dot operation in the few charge carrier Coulomb blockade regime for both electrons and holes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.