Abstract

One-/two-dimensional ternary CuAgSe nanotubes (NTs) were successfully prepared from copper selenide (Cu2-x Se) NTs at room temperature within a short reaction time by the facile cation-exchange approach. Cation exchange leads to the transformation of the crystal structure from cubic into orthorhombic and/or tetragonal with good retention of morphology. The exchange reactions are spontaneous owing to large negative changes of the Gibbs free energy. The effects of parameters such as reaction time, precursor source, and precursor ratio on the exchange reaction were investigated. The resultant CuAgSe NTs were explored as counter electrodes (CEs) of quantum-dot-sensitized solar cells (QDSSCs) and achieved higher conversion efficiency (η=5.61 %) than those of QDSSCs with the gold as the CE (3.32 %).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.