Abstract

We report laser induced local conversion of polycrystalline SiC thin-films grown on Si wafers into multi-layer graphene, a process compatible with the Si based microelectronic technologies. The conversion can be achieved using a 532 nm CW laser with as little as 10 mW power, yielding ∼1 μm graphene discs without any mask. The conversion conditions are found to vary with the crystallinity of the film. More interestingly, the internal structure of the graphene disc, probed by Raman imaging, can be tuned with varying the film and illumination parameters, resembling either the fundamental or doughnut mode of a laser beam.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.