Abstract

Efficient protection against degradation process of tetrahedrite-based thermoelectric materials was obtained employing AlTiN based thin films. The coatings were deposited via reactive direct current physical vapour deposition magnetron sputtering. The composition, thermal and electrical behaviour of thin films were investigated by X-ray diffraction, energy dispersive spectroscopy associated to field emission scanning electron microscopy, thermogravimetric analyses and electrical conductivity measurements. The barrier features for oxygen protection during thermal treatment in air at 500 °C were qualitatively evaluated, studying the coating behaviour over the higher operating temperature of tetrahedrite based thermoelectric devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.