Abstract

The study of efficient iterative algorithms for addressing nonlinear least-squares (NLS) problems is of great importance. The NLS problems, which belong to a special class of unconstrained optimization problems, are of particular interest because of the special structure of their gradients and Hessians. In this paper, based on the spectral parameters of Barzillai and Borwein (1998), we propose three structured spectral gradient algorithms for solving NLS problems. Each spectral parameter in the respective algorithms incorporates the structured gradient and the information gained from the structured Hessian approximation. Moreover, we develop a safeguarding technique for the first two structured spectral parameters to avoid negative curvature directions. Moreso, using a nonmonotone line-search strategy, we show that the proposed algorithms are globally convergent under some standard conditions. The comparative computational results on some standard test problems show that the proposed algorithms are efficient.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.