Abstract

Salinity represents a critical environmental factor for fishes, and it can directly influence their survival. Transcriptomic analysis at the gene expression level has been extensively conducted to identify functional genes or pathways involved in salinity adaptation in numerous euryhaline fishes. However, the post-transcriptional regulation mechanism in response to salinity changes remains largely unknown. Alternative splicing (AS), the main mechanism accounting for the complexity of the transcriptome and proteome in eukaryotes, plays essential roles in determining organismal responses to environmental changes. In this study, RNA-Seq datasets were used to examine the AS profiles in spotted sea bass (Lateolabrax maculatus), a typical euryhaline fish species. The results showed that 8618 AS events were identified in spotted sea bass. Furthermore, a total of 501 and 162 differential alternative splicing (DAS) events were characterized in the gill and liver under low- and high-salinity environments, respectively. Based on GO enrichment results, DAS genes in both the gill and liver were commonly enriched in 8 GO terms, and their biological functions were implicated in many stages of gene expression regulation, including transcriptional regulation and post-transcriptional regulation. Sanger sequencing and qPCR validations provided additional evidence to ensure the accuracy and reliability of our bioinformatic results. This is the first comprehensive view of AS in response to salinity changes in fish species, providing insights into the post-regulatory molecular mechanisms of euryhaline fishes in salinity adaptation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.