Abstract

This paper investigates three formulations of the leverage effect in a stochastic volatility model with a skewed and heavy-tailed observation distribu- tion. The first formulation is the conventional one, where the observation and evo- lution errors are correlated. The second is a hierarchical one, where log-volatility depends on the past log-return multiplied by a time-varying latent coefficient. In the third formulation, this coefficient is replaced by a constant. The three models are compared with each other and with a GARCH formulation, using Bayes fac- tors. MCMC estimation relies on a parametric proposal density estimated from the output of a particle smoother. The results, obtained with recent S&P500 and Swiss Market Index data, suggest that the last two leverage formulations strongly dominate the conventional one. The performance of the MCMC method is consis- tent across models and sample sizes, and its implementation only requires a very modest (and constant) number of filter and smoother particles.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.