Abstract

In this paper we accomplish the development of the fast rank-adaptive solver for tensor-structured symmetric positive definite linear systems in higher dimensions. In [arXiv:1301.6068] this problem is approached by alternating minimization of the energy function, which we combine with steps of the basis expansion in accordance with the steepest descent algorithm. In this paper we combine the same steps in such a way that the resulted algorithm works with one or two neighboring cores at a time. The recurrent interpretation of the algorithm allows to prove the global convergence and to estimate the convergence rate. We also propose several strategies, both rigorous and heuristic, to compute new subspaces for the basis enrichment in a more efficient way. We test the algorithm on a number of high-dimensional problems, including the non-symmetrical Fokker-Planck and chemical master equations, for which the efficiency of the method is not fully supported by the theory. In all examples we observe a convincing fast convergence and high efficiency of the proposed method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.