Abstract

Two types of polyelectrolyte multilayers were formed on both sides of a quartz crystal microbalance (QCM) substrate by a novel alternate drop coating process. In this study, poly(diallyldimethylammonium chloride) (PDDA) and poly(sodium 4-styrene sulfonate) (PSS) were used as strong-strong polyelectrolytes. On the other hand, PDDA and poly(acrylic acid) (PAA) were used as strong-weak polyelectrolytes. The novel alternate drop coating process can separately fabricate each polyelectrolyte multilayer on both sides of the substrate. The substrate provides dual biointerfaces, both sides of which comprise different multilayers, by employing a combination of polymers. The formation of the multilayer by alternate drop coating was evaluated in terms of changes in the frequency of the QCM and model protein adsorption for proteins such as bovine serum albumin, and their characteristics were investigated with those of the conventional alternate adsorption process by performing dip coating. There was no significant difference between the surface properties resulting from the two formation conditions. This result strongly supported the fact that the multilayers fabricated by alternate drop coating were similar in quality to those fabricated by conventional dip coating. The resulting dual biointerfaces with polyelectrolyte multilayers provide alternative biofunctions in terms of individual protein loading. In summary, the novel alternate drop coating process for substrates is a good candidate for the preparation of dual biointerfaces in the biomedical field.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.