Abstract

Protein misfolding and aggregation as a consequence of impaired protein homeostasis (proteostasis) not only characterizes numerous age-related diseases but also the aging process itself. Functionally related to the aging process are, among others, ribosomal proteins, suggesting an intimate link between proteostasis and aging. We determined by iTRAQ quantitative proteomic analysis in C. elegans how the proteome changes with age and in response to heat shock. Levels of ribosomal proteins and mitochondrial chaperones were decreased in aged animals, supporting the notion that proteostasis is altered during aging. Mitochondrial enzymes of the tricarboxylic acid cycle and the electron transport chain were also reduced, consistent with an age-associated energy impairment. Moreover, we observed an age-associated decline in the heat shock response. In order to determine how protein synthesis is altered in aging and in response to heat shock, we complemented our global analysis by determining the de novo proteome. For that, we established a novel method that enables both the visualization and identification of de novo synthesized proteins, by incorporating the non-canonical methionine analogue, azidohomoalanine (AHA), into the nascent polypeptides, followed by reacting the azide group of AHA by ‘click chemistry’ with an alkyne-labeled tag. Our analysis of AHA-tagged peptides demonstrated that the decreased abundance of, for example, ribosomal proteins in aged animals is not solely due to degradation but also reflects a relative decrease in their synthesis. Interestingly, although the net rate of protein synthesis is reduced in aged animals, our analyses indicate that the synthesis of certain proteins such as the vitellogenins increases with age.Electronic supplementary materialThe online version of this article (doi:10.1007/s00018-014-1558-7) contains supplementary material, which is available to authorized users.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.