Abstract

To determine whether neurophysiological mechanisms indicating cortical excitability, long-term potentiation (LTP)-like plasticity, GABAergic and glutamatergic function are altered in patients with anti-N-methyl-d-aspartate receptor (NMDAR) encephalitis and whether they can be helpful as markers of diagnostic assessment, disease progression, and potentially therapy response. Neurophysiological characterizations of patients with NMDAR encephalitis (n=34, mean age: 28±11years; 30 females) and age/gender-matched healthy controls (n=27, 28.5±10years; 25 females) were performed using transcranial magnetic stimulation-derived protocols including resting motor threshold, recruitment curve, intracortical facilitation, short intracortical inhibition, and cortical silent period. Paired associative stimulation (PAS) was applied to assess LTP-like mechanisms which are mediated through NMDAR. Moreover, resting state functional connectivity was determined using functional magnetic resonance imaging. PAS-induced plasticity differed significantly between groups (P=0.0056). Cortical excitability, as assessed via motor-evoked potentials after PAS, decreased in patients, whereas it increased in controls indicating malfunctioning of NMDAR in encephalitis patients. Lower PAS-induced plasticity significantly correlated with the modified Rankin Scale (mRS) (r=-0.41; P=0.0031) and was correlated with lower functional connectivity within the motor network in NMDAR encephalitis patients (P<0.001, uncorrected). Other neurophysiological parameters were not significantly different between groups. Follow-up assessments were available in six patients and demonstrated parallel improvement of PAS-induced plasticity and mRS. Assessment of PAS-induced plasticity may help to determine NMDAR dysfunction and disease severity in NMDAR encephalitis, and might even aid as a sensitive, noninvasive, and well-tolerated "electrophysiological biomarker" to monitor therapy response in the future. ClinicalTrials.gov: Identifier: NCT01865578.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.