Abstract

A primary therapeutic strategy for Alzheimer's disease includes acetylcholinesterase (AChE) inhibitors with the goal of enhancing cholinergic transmission. Stimulation of muscarinic acetylcholine receptors (mAChRs) by elevated levels of ACh plays a role in the effects of AChE inhibitors on cognition and behavior. However, AChE inhibitors only demonstrate modest symptomatic improvements. Chronic treatment with these drugs may cause mAChR downregulation and consequently limit the treatment efficacy. AChE knockout (-/-) mice were utilized in this study as a model for investigating the effects of selective, complete, and chronic diminished AChE activity on mAChR expression and function. In AChE -/- mice, the M(1), M(2), and M(4) mAChRs showed strikingly 50 to 80% decreased expression in brain regions associated with memory. In addition, mAChRs showed decreased presynaptic, cell surface, and dendritic distributions and increased localization to intracellular puncta. Furthermore, mAChR agonist-induced activation of extracellular signal-regulated kinase, a signaling pathway associated with synaptic plasticity and amyloidogenesis, is diminished in the hippocampus and cortex of AChE -/- mice. Therefore, chronic diminished ACh metabolism produces profound effects on mAChR expression and function. The alterations of mAChRs in AChE -/- mice suggest that mAChR downregulation may contribute to the limited efficacy of AChE inhibitors in Alzheimer's disease treatment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.