Abstract
The aims of the present study were to assess in obese and lean boys 1) the hemodynamic responses and baroreflex sensitivity (BRS) to isometric handgrip exercise (HG) and recovery and 2) the muscle metaboreflex-induced blood pressure response and the variables that determine this response. Twenty-seven boys (14 obese and 13 lean boys, body mass index: 29.2 ± 0.9 vs. 18.9 ± 0.3 kg/m(2), respectively) participated. The testing protocol involved 3 min of baseline, 3 min of HG (30% maximum voluntary contraction), 3 min of circulatory occlusion, and 3 min of recovery. The same protocol was repeated without occlusion. At baseline, no differences were detected between groups in beat-to-beat arterial pressure (AP), heart rate (HR), and BRS; however, obese boys had higher stroke volume and lower total peripheral resistance than lean boys (P < 0.05). During HG, lean boys exhibited higher HR and lower BRS compared with their obese counterparts. In lean boys, BRS decreased during HG compared with baseline, whereas in obese boys, it was not significantly modified. In lean boys, TPR was elevated during HG and declined after exercise, whereas in obese boys, TPR did not significantly decrease after exercise cessation. In the postexercise period, BRS in lean boys returned to baseline, whereas an overshoot was observed in obese boys. Postexercise BRS was correlated with body mass index (R = 0.56, P < 0.05). Although the metaboreflex-induced increase in AP was similar between obese and lean children, it was achieved via different mechanisms: in lean children, total peripheral resistance was the main contributor to AP maintenance during the metaboreflex, whereas in obese children, stroke volume significantly contributed to AP maintenance during the metaboreflex. In conclusion, obese normotensive children demonstrated altered cardiovascular hemodynamics and reflex control during exercise and recovery.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: American Journal of Physiology-Heart and Circulatory Physiology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.