Abstract

To electrophysiologically characterize the Na(v)1.4 mutant N440K found in a Korean family with a syndrome combining symptoms of paramyotonia congenita, hyperkalemic periodic paralysis, and potassium-aggravated myotonia. We characterized transiently expressed wild-type and mutant Na(v)1.4 using whole-cell voltage-clamp analysis. N440K produced a significant depolarizing shift in the voltage dependence of fast inactivation and increased persistent current and acceleration in fast inactivation recovery, which gave rise to a 2-fold elevation in the dynamic availability of the mutant channels. In addition, the mutant channels required substantially longer and stronger depolarization to enter the slow-inactivated state. N440K causes a gain of function consistent with skeletal muscle hyperexcitability as observed in individuals with the mutation. How the same mutation results in distinct phenotypes in the 2 kindreds remains to be determined.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.