Abstract

Chronic kidney disease (CKD) leads to impairment of immune cell function. Given the potential role of basophils in the pathogenesis of CKD, we aimed to study the basophil responsiveness towards microbial antigen exposure, judged as adhesion molecule expression and degranulation, in CKD patients on hemodialysis. We selected markers linked to two crucial biological phases: the transmigration and degranulation processes, respectively. For the transmigration process, we selected the adhesion molecules CD11b, active CD11b epitope, and CD62L and for the degranulation process CD203c (piecemeal degranulation marker), CD63 (degranulation marker), and CD300a (inhibitory marker of degranulation). We measured basophil responsiveness after stimulation of different activation pathways in basophils using lipopolysaccharide (LPS), peptidoglycan (PGN), formyl-methyinoyl-leucyl-phenylalanine (fMLP), and anti-FcεRI-ab. The expression of CD63 in basophils following activation by fMLP was significantly higher in the patient group compared to matched healthy controls, but no differences were observed after activation by anti-FcɛI. CD300a expression was significantly higher in patients following activation by fMLP and anti-FcɛI, and the active epitope CD11b expression was significantly higher in patients after LPS activation. In addition, we found that CD62L was not shed from the cell surface after activation with LPS and fMLP. A slight downregulation was noted after activation with anti-FcɛI in healthy controls. Together, these data demonstrate that basophil functions related to adhesion and degranulation are altered in CKD patients on hemodialysis, which indicates a potential role for the basophil in the pathogenesis of complications related to infections.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.