Abstract

Transient cerebral ischemia results in an increase in the tyrosine phosphorylation of proteins associated with postsynaptic densities (PSDs). The authors investigated the possible mechanisms behind this increase by analyzing isolated PSDs for protein tyrosine kinase activity and for the presence of specific tyrosine kinases. Transient (15 minutes) global ischemia was produced in adult rats by four-vessel occlusion, and PSDs were isolated immediately after ischemia or after 20 minutes or 6 hours of reperfusion. Tyrosine phosphorylation of several PSD proteins, including the N-methyl-D-aspartate (NMDA) receptor subunits NR2A and NR2B, was enhanced relative to shams after 20 minutes of reperfusion and underwent a further increase between 20 minutes and 6 hours. The ability of intrinsic PSD tyrosine kinase to phosphorylate PSD proteins, including the NMDA receptor, increased threefold after ischemia. Whereas PSD-associated proline-rich tyrosine kinase 2 (PYK2) and gp145TrkB were elevated immediately after the ischemic event, increases in Src and Fyn were not apparent until 6 hours of reperfusion. The level of PSD-associated pp125FAK decreased after ischemia. The results demonstrate that ischemia results in selective changes in the association of protein tyrosine kinases with the PSD which may account for ischemia-induced increases in the tyrosine phosphorylation of PSD proteins.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.