Abstract
The aspartate proteinase inhibitor pepstatin A has been shown previously to reduce the adherence of Candida albicans yeast cells to human surfaces. This suggests that in addition to their presumed function facilitating tissue penetration, the secreted aspartate proteinases (Saps) of this fungal pathogen may have auxiliary roles as cellular adhesins. We therefore examined the relative adherence of yeast cells of a parental wild-type strain of C. albicans in relation to yeast cells of strains harbouring specific disruptions in various members of the SAP gene family in an otherwise isogenic background. The adhesiveness of Δ sap1, Δ sap2 and Δ sap3 null mutants and a triple Δ sap 4–6 disruptant was examined on three surfaces – glass coated with poly- l-lysine or a commercial cell-free basement membrane preparation (Matrigel) and on human buccal epithelial cells. Pepstatin A reduced adherence to all surfaces. Adherence of the each of the single SAP null mutants to these three substrates was either reduced or not affected significantly compared to that of the parental strain. The adherence of the Δ sap4–6 mutant was reduced on poly- l-lysine and Matrigel, but increased on buccal cells. The results suggest that in addition to a primary enzymatic role, various SAPs may also act singly or synergistically to enhance the adhesiveness to C. albicans cells to certain human tissues.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.