Abstract

A copper/low-density polyethylene nanocomposite (nano-Cu/LDPE), a potential intrauterine device component material, has been developed from our research. A logical extension of our previous work, this study was conducted to investigate the expression of plasminogen activator inhibitor 1 (PAI-1), substance P (SP), and substance P receptor (SP-R) in the endometrium of Sprague Dawley rats, New Zealand White rabbits, and Macaca mulatta implanted with nano-Cu/LDPE composite. The influence of the nano-Cu/LDPE composite on the morphology of the endometrium was also investigated. Animals were randomly divided into five groups: the sham-operated control group (SO group), bulk copper group (Cu group), LDPE group, and nano-Cu/LDPE groups I and II. An expression of PAI-1, SP, and SP-R in the endometrial tissues was examined by immunohistochemistry at day 30, 60, 90, and 180 postimplantation. The significant difference for PAI-1, SP, and SP-R between the nano-Cu/LDPE groups and the SO group (P<0.05) was identified when the observation period was terminated, and the changes of nano-Cu/LDPE on these parameters were less remarkable than those of the Cu group (P<0.05). The damage to the endometrial morphology caused by the nano-Cu/LDPE composite was much less than that caused by bulk copper. The nano-Cu/LDPE composite might be a potential substitute for conventional materials for intrauterine devices in the future because of its decreased adverse effects on the endometrial microenvironment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.