Abstract

A woman’s risk for metabolic syndrome (MS) increases at menopause, with an associated increase in risk for cardiovascular disease. We hypothesized that early menopause-related changes in platelet activity and concentrations of microvesicles derived from activated blood and vascular cells provide a mechanistic link to the early atherothrombotic process. Thus, platelet functions and cellular origin of blood-borne microvesicles in recently menopausal women (n = 118) enrolled in the Kronos Early Estrogen Prevention Study were correlated with components of MS and noninvasive measures of cardiovascular disease [carotid artery intima medial thickness (CIMT), coronary artery calcium (CAC) score, and endothelial reactive hyperemic index (RHI)]. Specific to individual components of the MS pentad, platelet number increased with increasing waist circumference, and platelet secretion of ATP and expression of P-selectin decreased with increasing blood glucose (p = 0.005) and blood pressure (p < 0.05), respectively. Waist circumference and systolic blood pressure were independently associated with monocyte- and endothelium-derived microvesicles (p < 0.05). Platelet-derived and total procoagulant phosphatidylserine-positive microvesicles, and systolic blood pressure correlated with CIMT (p < 0.05), but not with CAC or RHI. In summary, among recently menopausal women, specific platelet functions and concentrations of circulating activated cell membrane-derived procoagulant microvesicles change with individual components of MS. These cellular changes may explain in part how menopause contributes to MS and, eventually, to cardiovascular disease.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.