Abstract
Outer membrane vesicles (OMVs) shed from the gastroduodenal pathogen Helicobacter pylori have measurable effects on epithelial cell responses. The aim of this study was to determine the effect of iron availability, and its basis, on the extent and nature of lipopolysaccharide (LPS) produced on H. pylori OMVs and their parental bacterial cells. Electrophoretic, immunoblotting and structural analyses revealed that LPSs of bacterial cells grown under iron-limited conditions were notably shorter than those of bacteria and OMVs obtained from iron-replete conditions. Structural analysis and serological probing showed that LPSs of iron-replete cells and OMVs expressed O-chains of Lewis(x) with a terminal Lewis(y) unit, whereas Lewis(y) expression was notably reduced on bacteria and OMVs from iron-limiting conditions. Unlike the O-chain, the core oligosaccharide and lipid A moieties of iron-replete and iron-limited bacteria and their OMVs were similar. Quantitatively, shed OMVs from iron-replete bacteria were found to be LPSenriched, whereas shed OMVs from iron-limited bacteria had a significantly reduced content of LPS. These differences were linked to bacterial ATP levels. Since iron availability affects the extent and nature of LPS expressed by H. pylori, host iron status may contribute to H. pylori pathogenesis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.