Abstract

To define the role of galectin-3 in breast cancer progression, we have used a novel three-dimensional co-culture system that recapitulates in vivo reciprocal functional breast epithelial-endothelial cell-cell and cell-matrix interactions, and examined the expression of galectin-3 mRNA and protein in human breast tumors and xenografts. Galectin-3 is required for the stabilization of epithelial-endothelial interaction networks because immunoneutralization with galectin-3 antibodies abolishes the interactions in a dose-dependent manner. Co-culture of epithelial cells with endothelial cells results in increase in levels of secreted galectin-3 and presence of proteolytically processed form of galectin-3 in the conditioned media. In contrast, intracellular galectin-3 predominantly exists in the intact form. This difference in sensitivity to proteolytic processing of secreted versus intracellular galectin-3 probably arises from differences in accessibility of protease-sensitive sites, levels, and/or type of activated protease(s), and may be indicative of different functional roles for intact and processed galectin-3. To determine whether the proteolytically cleaved galectin-3 retains its ability to bind to endothelial cells, binding assays were performed with the full-length and matrix metallopeoteinase-2-cleaved recombinant galectin-3. Although a dose-dependent increase in binding to human umbilical vein endothelial cells was observed with both full-length and cleaved galectin-3, proteolytically cleaved galectin-3 displayed approximately 20-fold higher affinity for human umbilical vein endothelial cells as compared to the full-length protein. Examination of galectin-3 expression in breast tumors and xenografts revealed elevated levels of galectin-3 mRNA and protein in the luminal epithelial cells of normal and benign ducts, down-regulation in early grades of ductal carcinoma in situ (DCIS), and re-expression in peripheral tumor cells as DCIS lesions progressed to comedo-DCIS and invasive carcinomas. These data suggest that galectin-3 expression is associated with specific morphological precursor subtypes of breast cancer and undergoes a transitional shift in expression from luminal to peripheral cells as tumors progressed to comedo-DCIS or invasive carcinomas. Such a localized expression of galectin-3 in cancer cells proximal to the stroma could lead to increased invasive potential by inducing novel or better interactions with the stromal counterparts.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.