Abstract

PurposeTo evaluate dynamic changes in apparent diffusion coefficient (ADC) values of the kidney at different time points during the cardiac cycle using electrocardiographic (ECG)-triggered diffusion-weighted MR imaging in normal subjects, and to elucidate the differences in ADC values between the right and left kidneys during a cardiac cycle. Materials and methodsThe study was approved by our institutional review board and informed consent was obtained from subjects. Twenty healthy volunteers who underwent ECG-triggered diffusion-weighted MR imaging of the kidney were included. The differences in ADC values of each kidney during different cardiac phases were compared. Additionally, the differences in maximum and minimum ADC values between the right and left kidney were also evaluated. ResultsADC values in the right and left kidney changed significantly during the cardiac cycle (P < 0.00001). Maximum and minimum ADC values during the cardiac cycle of the left kidney were significantly higher (P = 0.026 and 0.017, respectively) than those of the right kidney. Maximum ADC value in the left kidney had a significantly strong positive correlation with the left renal vein ratio (r = 0.83, P < 0.00001). In the right kidney, maximum ADC showed a weakly positive correlation with the diameter of the right renal vein (r = 0.45, P = 0.048). ConclusionADC values of the kidney obtained using ECG-triggered diffusion-weighted MR imaging change significantly during the cardiac cycle. Maximum (systolic) ADC during the cardiac cycle of the left kidney was significantly higher than that of the right kidney, probably due to the anatomical difference in the renal vein.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.