Abstract
BackgroundSpinal cord neurons of ALS patients demonstrate reduced cytochrome oxidase histochemical activity, and ALS spinal cord tissues have increased mitochondrial DNA (mtDNA) point mutations and depleted mtDNA levels. It is presently unknown whether mtDNA abnormalities are present in single human ALS neurons.ResultsUsing laser capture microdissection (LCM) we isolated several hundred individual anterior spinal neurons from unfixed, frozen sections of 10 ALS and 7 age-matched CTL cervical spinal cords. DNA from each individual neuron was analyzed with multiplex qPCR for ND2, CO3, and ND4, three mitochondrial DNA genes encoding respiratory proteins. Scatterplots of individual spinal neuron results showed extensive heterogeneity of mtDNA gene levels across 4-5 orders of magnitude that were much more clustered in single Purkinje neurons isolated from CTL cerebella. Plots of ratios of ND4/ND2 and CO3/ND2 showed that many but not all ALS neurons from individuals contained low ratios of these mtDNA genes, implying greater abundances of mtDNA deletions in the major arc. Single CTL cerebellar Purkinje neurons did not contain high levels of apparent mtDNA deletions observed in anterior spinal neurons.ConclusionsAt the time of ALS subjects' deaths, many but not all surviving anterior neurons in their cervical spinal cords have reduced mtDNA gene levels and increased mtDNA deletion abundances that arise for unclear reasons. If these anterior spinal neuron mtDNA gene deficiencies contribute to bioenergetic impairments, reduced synaptic function and increased risk of degeneration, then introduction into mitochondria and expression of intact mtDNA, now available through use of recently developed recombinant human TFAM, may reverse the course of ALS.
Highlights
Spinal cord neurons of amyotrophic lateral sclerosis (ALS) patients demonstrate reduced cytochrome oxidase histochemical activity, and ALS spinal cord tissues have increased mitochondrial DNA point mutations and depleted mtDNA levels
Surviving spinal motorneurons in ALS cases exhibit substantial loss within their populations of histochemical activity of cytochrome oxidase (CO) [15], the terminal respiratory enzyme complex in the mitochondrial electron transport chain (ETC) that is composed of three subunits coded by mitochondrial DNA, ten subunits coded by nuclear DNA and utilizes critical assembly factors coded by nuclear genes [16]
Results mtDNA ND2 gene copy numbers are equivalent in ALS and CTL spinal neurons Figure 1A shows approximate locations of PCR products generated in our qPCR assay
Summary
Spinal cord neurons of ALS patients demonstrate reduced cytochrome oxidase histochemical activity, and ALS spinal cord tissues have increased mitochondrial DNA (mtDNA) point mutations and depleted mtDNA levels. It is presently unknown whether mtDNA abnormalities are present in single human ALS neurons. Surviving spinal motorneurons in ALS cases exhibit substantial loss within their populations of histochemical activity of cytochrome oxidase (CO) [15], the terminal respiratory enzyme complex in the mitochondrial electron transport chain (ETC) that is composed of three subunits coded by mitochondrial DNA (mtDNA), ten subunits coded by nuclear DNA and utilizes critical assembly factors coded by nuclear genes [16].
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.