Abstract
Alcohol use disorder (AUD) is a serious public health problem that results in tremendous social, legal and medical costs to society. Unlike other addictive drugs, there is no specific molecular target for ethanol (EtOH). Here, we report a novel molecular target that mediates EtOH effects at concentrations below those that cause legally-defined inebriation. Using patch-clamp recording of human α6*-nicotinic acetylcholine receptor (α6*-nAChR) function when heterologously expressed in SH-EP1 human epithelial cells, we found that 0.1–5 mM EtOH significantly enhances α6*-nAChR-mediated currents with effects that are dependent on both EtOH and nicotine concentrations. EtOH exposure increased both whole-cell current rising slope and decay constants. This EtOH modulation was selective for α6*-nAChRs since it did not affect α3β4-, α4β2-, or α7-nAChRs. In addition, 5 mM EtOH also increased the frequency and amplitude of dopaminergic neuron transients in mouse brain nucleus accumbens slices, that were blocked by the α6*-nAChR antagonist, α-conotoxin MII, suggesting a role for native α6*-nAChRs in low-dose EtOH effects. Collectively, our data suggest that α6*-nAChRs are sensitive targets mediating low-dose EtOH effects through a positive allosteric mechanism, which provides new insight into mechanisms involved in pharmacologically-relevant alcohol effects contributing to AUD.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.