Abstract

The noradrenaline (NA)-induced cation current was investigated in neurones freshly isolated from rat cardiac parasympathetic ganglia using the nystatin-perforated patch recording configuration. Under current-clamp conditions, NA depolarized the membrane, eliciting repetitive action potentials. NA evoked an inward cation current under voltage-clamp conditions at a holding potential of −60 mV. The NA-induced current was inhibited by extracellular Ca2+ or Mg2+, with a half-maximal concentration of 13 μm for Ca2+ and 1.2 mm for Mg2+. Cirazoline mimicked the NA response, and prazosin and WB-4101 inhibited the NA-induced current, suggesting the contribution of an α1-adrenoceptor. The NA-induced current was inhibited by U73122, a phospholipase C (PLC) inhibitor. The membrane-permeable IP3 receptor blocker xestospongin-C also blocked the NA-induced current. Furthermore, pretreatment with thapsigargin and BAPTA-AM could inhibit the NA response while KN-62, phorbol 12-myristate 13-acetate (PMA) and staurosporine had no effect. These results suggest that NA activates the extracellular Ca2+- and Mg2+-sensitive cation channels via α1-adrenoceptors in neurones freshly isolated from rat cardiac parasympathetic ganglia. This activation mechanism also involves phosphoinositide breakdown, release of Ca2+ from intracellular Ca2+ stores and calmodulin. The cation channels activated by NA may play an important role in neuronal membrane depolarization in rat cardiac ganglia.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.