Abstract

The capacity to rapidly suppress a behavioral act in response to sudden instruction to stop is a key cognitive function. This function, called reactive control, is tested in experimental settings using the stop signal task, which requires subjects to generate a movement in response to a go signal or suppress it when a stop signal appears. The ability to inhibit this movement fluctuates over time: sometimes, subjects can stop their response, and at other times, they can not. To determine the neural basis of this fluctuation, we recorded local field potentials (LFPs) in the alpha (6–12 Hz) and beta (13–35 Hz) bands from the dorsal premotor cortex of two nonhuman primates that were performing the task. The ability to countermand a movement after a stop signal was predicted by the activity of both bands, each purportedly representing a distinct neural process. The beta band represents the level of movement preparation; higher beta power corresponds to a lower level of movement preparation, whereas the alpha band supports a proper phasic, reactive inhibitory response: movements are inhibited when alpha band power increases immediately after a stop signal. Our findings support the function of LFP bands in generating the signatures of various neural computations that are multiplexed in the brain.

Highlights

  • Reactive control is the ability to rapidly suppress an imminent behavioral act in response to a sudden instruction to stop (Stuphorn and Emeric, 2012)

  • The beta band represents the level of movement preparation; higher beta power corresponds to a lower level of movement preparation, whereas the alpha band supports a proper phasic, reactive inhibitory response: movements are inhibited when alpha band power increases immediately after a stop signal

  • We examined the dynamic of the alpha and beta band components of local field potentials (LFPs) while recording from the dorsal premotor cortex (PMd) of a monkey, an area that has significant function in the frontal basal ganglia network in motor control (Mirabella et al, 2011; Marcos et al, 2013)

Read more

Summary

Introduction

Reactive control is the ability to rapidly suppress an imminent behavioral act in response to a sudden instruction to stop (Stuphorn and Emeric, 2012). It is a significant function in cognitive control that is impaired in many psychiatric diseases and genetic syndromes (Aron, 2011; Brunamonti et al, 2011; Takkar et al, 2011; Pani et al, 2013). A potential factor that favors this modulation in performance is the finding that stop signals are presented in brief periods that are characterized by various tonic levels of movement preparation. A wide network that comprises frontal cortical and subcortical (especially the basal ganglia and cerebellum) structures regulates the competition between movement preparation and movement suppression, which constitute the two sides of movement control (Chambers et al, 2009; Stuphorn and Emeric, 2012; Brunamonti et al, 2014)

Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.