Abstract

The frequency-dependent aerodynamic damping and stiffness of high-rise buildings in along-wind motion have been systematically investigated and compared through wind tunnel tests under smooth wind flow. A novel identification scheme based on the indirect forced actuation technique was developed, involving only a simple curve-fitting technique on the frequency response function induced by the actuation. To ensure that global minimization in curve-fitting was achieved, a genetic algorithm and a conventional gradient search method were used in obtaining the final results. An alternative derivation of the frequency response function via the time-domain state space equation is also presented, which has the supporting advantage that the simulation of time history of the structural response becomes possible. To demonstrate the approach, various prism models representing different high-rise buildings with varied aspect ratios and height-width ratios were used in the experimental identification. A total of nine mo...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.