Abstract
Abstract: The aim of our study was to clarify the apoptosis pathway induced by aloe emodin, an hydroxyanthraquinone present in aloe vera leaves, in rat hepatic stellate cells transformed by simian virus 40 (t‐HSC/Cl‐6), which retain the features of activated rat stellate cells. Apoptosis was determined by DNA fragmentation, caspase activity assay and western blotting analysis. Treatment of t‐HSC/Cl‐6 cells with 12.5, 25, or 50 μM aloe emodin inhibited t‐HSC/Cl‐6 cell viability in a dose‐ and time‐dependent manner. The induction of apoptosis by aloe emodin was confirmed by typical DNA ladder formation and annexin v‐propidium iodide flow‐cytometric analysis. Aloe emodin treatment of t‐HSC/Cl‐6 cells caused activation of caspase‐3 and caspase‐9, detected with a caspase activity assay, although no change was observed in caspase‐8 activity. Western blotting showed caspase‐3 and caspase‐9 active forms and the subsequent proteolytic cleavage of poly(ADP‐ribose) polymerase. Aloe emodin induced mitochondrial membrane depolarization. Our data also show that cytochrome c increased in the cytosol but decreased in the mitochondria in a time‐dependent manner. Increased Bax and unchanged Bcl‐2 levels resulted in an increased Bax/Bcl‐2 ratio. Thus, our research provides evidence that aloe emodin‐induced apoptosis involves a mitochondria‐associated apoptosis pathway.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Basic & Clinical Pharmacology & Toxicology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.