Abstract

In this paper, we critically revisit the Horowitz–Maldacena proposal and its generalization by Lloyd. In the original proposal, as well as in Lloyd’s generalization, Hawking radiation involves a pair of maximally entangled quantum states in which the ingoing partner state and the collapsed matter form either a maximally entangled pair or a Schmidt decomposed random state near the singularity. We point out that the unitary matrix introduced in Lloyd’s fidelity calculation depends on initial matter states; hence, his result on the high average fidelity may not represent an almost unitary evolution. In opposition to Lloyd’s conclusion, when we do not include the state-dependent unitary matrix for the fidelity computation, we analytically and numerically confirm that information will almost certainly be lost, because the fidelity will approach zero as the degrees of freedom increase.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.