Abstract

Abstract We carried out new CO(J = 2–1) observations toward the mixed-morphology supernova remnant (SNR) W49B with the Atacama Large Millimeter/submillimeter Array. We found that CO clouds at ∼10 km s−1 show a good spatial correspondence to the synchrotron radio continuum as well as to an X-ray deformed shell. The bulk mass of molecular clouds accounts for the western part of the shell, not the eastern shell, where near-infrared H2 emission is detected. The molecular clouds at ∼10 km s−1 show higher kinetic temperatures of ∼20–60 K, suggesting that modest shock heating occurred. The expanding motion of the clouds with ΔV ∼ 6 km s−1 was formed by strong winds from the progenitor system. We argue that the barrel-like structure of Fe-rich ejecta was possibly formed not only by an asymmetric explosion, but also by interactions with dense molecular clouds. We also found a negative correlation between the CO intensity and the electron temperature of recombining plasma, implying that the origin of the high-temperature recombining plasma in W49B can be understood to be the thermal conduction model. The total energy of accelerated cosmic-ray protons W p is estimated to be ∼2 × 1049 erg by adopting an averaged gas density of ∼650 ± 200 cm−3. The SNR age–W p diagram indicates that W49B shows one of the highest in situ values of W p among gamma-ray-bright SNRs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.