Abstract

Noble metal nanoparticles with hollow interiors and customizable shell compositions have immense potential for catalysis. Herein, we present an unique structure transformation phenomenon for the fabrication of alloy Cu3Pt nanoframes with polyhedral morphology. This strategy starts with the preparation of polyhedral Cu-Pt nanoparticles with a core-shell construction upon the anisotropic growth of Pt on multiply twinned Cu seed particles, which are subsequently transformed into alloy Cu3Pt nanoframes due to the Kirkendall effect between the Cu core and Pt shell. The as-prepared alloy Cu3Pt nanoframes possess the rhombic dodecahedral morphology of their core-shell parents after the structural evolution. In particular, the resulting alloy Cu3Pt nanoframes are more effective for oxygen reduction reaction but ineffective for methanol oxidation reaction in comparison with their original Cu-Pt core-shell precursors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.