Abstract

Matrix metalloproteinases (MMPs) are a family of structurally related zinc-containing endopeptidases involved in tissue remodelling and degradation of the extracellular matrix. The failure of common synthetic inhibitors makes the design of new selective and potent MMP inhibitors an extreme challenge in health care for the treatment of various pathological states such as inflammation, arthritis, and cancer. In this view, an over-expression of MMP-2 is supposed to be responsible for the occurrence of many different human tumours and inflammatory processes involving the hydrolysis of the type IV collagen, the main component of the basement membrane. A series of studies therefore focused on the design of new potential inhibitors biased towards MMP-2: campaigns of molecular virtual screening of several large chemical libraries resulted in a number of attractive hits. Interestingly, a shortlist of alloxan-like structures was selected with inhibition constants in the nM range. In this respect, we investigated a series of complexes of MMP-2 with alloxan inhibitors by thermodynamic integration in all atoms molecular dynamics simulations. We thus obtained quantitative differences in binding free energies for a list of alloxan compounds. On this basis, we were able to elucidate the molecular rationale for the remarkable inhibition exerted by these compounds with the ultimate aim of driving the synthesis of new more potent and selective derivatives that are at present awaiting for further experimental investigations through enzymatic assays.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.