Abstract

We present graphs of information versus disturbance for general quantum measurements of completely unknown states. Each piece of information and disturbance is quantified by two measures: (i) the Shannon entropy and estimation fidelity for the information and (ii) the operation fidelity and physical reversibility for the disturbance. These measures are calculated for a single outcome based on the general formulas derived by the present author (Terashima in Phys Rev A 93:022104, 2016) and are plotted on four types of information–disturbance planes to show their allowed regions. In addition, we discuss the graphs of these metrics averaged over all possible outcomes and the optimal measurements when saturating the upper bounds on the information for a given disturbance. The results considerably broaden the perspective of trade-offs between information and disturbances in quantum measurements.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.