Abstract
This review summarizes endeavors undertaken in the middle of last century to employ the Lamm equation for quantitative analysis of boundary spreading in sedimentation velocity experiments on globular proteins, thereby illustrating the ingenuity required to achieve that goal in an era when an approximate analytical solution of that nonlinear differential equation of second order provided the only means for its application. Application of procedures based on that approximate solution to simulated sedimentation velocity distributions has revealed a slight disparity (about 3%) between returned and input values of the diffusion coefficient-a discrepancy comparable with that of estimates obtained by current simulative analyses based on numerical solution of the Lamm equation. Although the massive technological developments in the gathering and treatment of sedimentation velocity data over the past three to four decades have changed dramatically the manner in which boundary spreading is analyzed, they have not led to any significant improvement in the accuracy of the diffusion coefficient thereby deduced.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.