Abstract

Glutamine synthetase (GS) regulation in Escherichia coli by reversible covalent modification cycles is a prototype of signal transduction by enzyme cascades. Such enzyme cascades are known to exhibit ultrasensitive response to primary stimuli and act as signal integration systems. Here, we have quantified GS bicyclic cascade based on steady state analysis by evaluating Hill coefficient. We demonstrate that adenylylation of GS with glutamine as input is insensitive to total enzyme concentrations of GS, uridylyltransferase/uridylyl-removing enzyme, regulatory protein PII, and adenylyltransferase/adenylyl-removing enzyme. This robust response of GS adenylylation is also observed for change in system parameters. From numerical analyses, we show that the robust ultrasensitive response of bicyclic cascade is because of allosteric interactions of glutamine and 2-ketoglutarate, bifunctionality of converter enzymes, and closed loop bicyclic cascade structure. By system level quantification of the GS bicyclic cascade, we conclude that such a robust response may help the cell in adapting to different carbon and nitrogen status.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.