Abstract

Mixed disulphide formation in the presence of oxidized glutathione reversibly inactivates rabbit skeletal muscle aldolase. Inactivation is allosteric, preferentially modifying Cys-72 on the surface of the aldolase homotetramer distant from active-site locations and subunit interfaces. Ion-exchange chromatography fractionates partly inactivated aldolase into three distinct enzymic species: unmodified enzyme, inactive fully modified enzyme corresponding to one thiol reacted per subunit, and inactive singly modified enzyme in which only one thiol has reacted. Acid-precipitable enzymic intermediates formed in the presence of substrate, D-fructose 1,6-bisphosphate, and product, dihydroxyacetone phosphate, indicates that active site binding is unaffected upon modification. The absence of enamine carbanion formation in the presence of substrate but not product is consistent with mixed disulphide formation's blocking -C-C- cleavage and/or subsequent D-glyceraldehyde 3-phosphate release. Inactivation upon single subunit modification and substrate protection against modification denotes that the blocked step is associated with a long-range conformational transition involving highly co-operative subunit behaviour.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.