Abstract

The polarization of light is utilized in many technologies throughout science and engineering. The ability to transform one state of polarization to another is a key enabling technology. Common polarization transformers are simple polarizers and polarization rotators. Simple polarizers change the intensity depending on the input state and can only output a fixed polarized state, while polarization rotators rotates the input Stokes vector in the 3D Stokes space. We experimentally demonstrate an all-optical input-agnostic polarization transformer (AI-APT), which transforms all input states of polarization to a particular state that can be polarized or partially polarized. The output state of polarization and intensity depends solely on setup parameters, and not on the input state, thereby the AI-APT functions differently from simple polarizers and polarization rotators. The AI-APT is completely passive, and thus can be used as a polarization controller or stabilizer for single photons and ultrafast pulses. To achieve this, we, for the first time, experimentally realize complete kinematic state controllability of an open single-qubit by Kraus maps put forth in Wu et al. (J Phys A 40:5681, 2007). The AI-APT may open a new frontier of partially polarized ultrafast optics.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.