Abstract

Maximal metabolic rate (MMR) of mammals scales differently from basal metabolic rate (BMR). This is first shown by scrutinizing data reported on exercise-induced Vo2 max in 34 eutherian mammalian species covering a body mass range of 7 g-500 kg. Vo2 max was found to scale with the 0.872 (+/-0.029, 95% confidence limits 0.813-0.932) power of body mass which is significantly different from the 3/4 power reported for basal metabolic rate. The aerobic scope is higher in athletic than non-athletic species, and it is also higher in large than in small species. Integrated structure-function studies on a subset of 11 species (body mass 20 g-450 kg) show that the variation of Vo2 max with body size is tightly associated with the aerobic capacity of the locomotor musculature: the scaling exponents for Vo2 max, the total volume of mitochondria, and the volume of capillaries are nearly identical. The higher Vo2 max of athletic species is tightly linked to proportionally larger mitochondrial and capillary volumes in animals of the same size class. As a result Vo2 max is linearly related to both total mitochondrial and capillary erythrocyte volumes. We conclude that the scaling of maximal metabolic rate is explained by features and mechanisms different from those determining basal metabolic rate.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.