Abstract

The author studies the complexity of the problem of allocating modules to processes in a distributed system to minimize total communication and execution costs. He shows that unless P=NP, there can be no polynomial-time epsilon -approximate algorithm for the problem, nor can there exist a local search algorithm that requires polynomial time per iteration and yields an optimum assignment. Both results hold even if the communication graph is planar and bipartite. On the positive side, it is shown that if the communication graph is a partial k-tree or an almost-tree with parameter k, the module allocation problem can be solved in polynomial time.< <ETX xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">&gt;</ETX>

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.