Abstract

This study hypothesized that acetate breaks the vicious cycle driving adipose-hepatic metabolic dysregulation in a rat model of polycystic ovarian syndrome (PCOS), possibly by suppression of nuclear factor-kappaB (NF-κB)/NOD-like receptor protein 3 (NLRP3) inflammasome. Female Wistar rats (8-week-old) were randomly allocated into four groups of n =6/group, which received vehicle, sodium acetate (200 mg), letrozole (1 mg/kg), and letrozole plus sodium acetate, respectively. The animals were treated by oral gavage, once daily for a period of 21 days. The PCOS animals were insulin-resistant, hyperandrogenic, and hypoestrogenic with decreased sex-hormone binding globulin. In addition, the hepatic tissue had increased lipid profile and decreased glycogen synthesis, while the adipose tissue showed decreased lipid profile with elevated glycogen synthesis. Besides, the results also showed increased malondialdehyde, γ-glutamyl transferase, lactate dehydrogenase, and inflammatory mediators with corresponding decrease in antioxidant defense in the hepatic and adipose tissues. Immunohistochemical evaluation also demonstrated severe expression with Bcl2-associated X protein/NLRP3 antibodies. Nonetheless, concomitant acetate supplementation attenuated these derangements. The present data collectively suggest that acetate ameliorates adipose-hepatic glycolipid dysregulation in experimental PCOS model by attenuating androgen excess and NF-κB/NLRP3 immunoreactivity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.