Abstract

Electrochemically active lithium sulfide–carbon composite positive electrodes, prepared by the spark plasma sintering process, were applied to all-solid-state lithium secondary batteries with a glass electrolyte. The electrochemical tests demonstrated that cells showed the initial charge and discharge capacities of ca. 1010 and , respectively, which showed higher discharge capacity and coulombic efficiency (ca. 91%) than the cells with nonaqueous liquid electrolytes (ca. and ca. 27%, respectively). The ex situ S K-edge X-ray absorption fine structure measurements suggested the appearance and disappearance of elemental sulfur in the positive electrodes after charging and discharging, respectively, indicating that the ideal electrochemical reaction proceeded in the present all-solid-state cells. Such ideal electrochemical reaction, due probably to the suppression of the dissolution of in the form of polysulfides into the electrolytes, would result in higher coulombic efficiency and discharge capacity as compared with those of the liquid-electrolyte cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.