Abstract
Several all-optical methods for ultra-wideband (UWB) pulse generation based on various nonlinearities of single semiconductor optical amplifiers (SOAs), namely cross phase modulation (XPM), cross gain modulation (XGM), and a hybrid of self phase modulation (SPM) and XGM, have been demonstrated. In the first method, UWB doublet pulses are realized with XPM. The input optical Gaussian pulse will be converted to two polarity-reversed monocycle pulses by a blue shifted and a red shifted optical bandpass filters respectively. These two monocycle pulses are then combined with proper time delay to generate two polarity-reversed doublet pulses. Second, two polarityreversed monocycle pulses are obtained based on XGM of the SOA and group delay of the single mode fiber (SMF). In the scheme, two polarity-reversed Gaussian pulses are generated due to XGM, and then the mixed signal is converted to a monocycle shape due to the group delay of the SMF. Finally, we present UWB doublet generation based on SPM. The monocycle pulse is generated from a dark return-to-zero (RZ) signal and converted to a doublet pulse by injecting an additional probe signal with the SMF transmission. For the first time and to the best of our knowledge, we report that the generated doublet pulses are transmitted over 5 km SMF by proper dispersion compensation without distortion. The configuration of our alloptical methods is compact and simple. The feasibility to implement the pulse shape modulation and pulse polarity modulation is discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.