Abstract

Atom–nanowire coupling system is a promising platform for optical quantum information processing. Unlike the previous designing of optical switch and transistor requiring a dedicated multi-level emitter and high fineness microcavity, a new proposal is put forward which contains a single two-level atom asymmetrically coupled with two nanowires. Single-emitter manipulation of photonic signals for bilateral coherent incident is clear now, since we specify atomic saturation nonlinearity into three contributions which brings us a new approach to realizing light-controlled-light at weak light and single-atom levels. An efficient optically controllable switch based on self-matching-induced-block and a concise optical transistor are proposed. Our findings show potential applications in full-optical devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.