Abstract

Simultaneous all-optical switching of 20 continuous-wave wavelength channels is achieved in a microring resonator-based silicon broadband 12 comb switch. Moreover, single-channel power penalty measurements are performed during active operation of the switch at both the through and the drop output ports. A statistical characterization of the drop-port insertion losses and extinction ratios of both ports shows broad spectral uniformity, and bit-error-rate measurements during passive operation indicate a negligible increase in signal degradation as the number of wavelength channels exiting the drop port are scaled from one to 16, with peak powers of 6 dBm per channel. A high-speed broadband switching device, such as the one described here, is a crucial element for the deployment of interconnection networks based on silicon photonic integrated circuits.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.