Abstract

The characterization of the temporal waveform of few-cycle laser pulses is an indispensable part in strong-field physics and attosecond science. Recently, a simple waveform-characterization technique called TIPTOE (tunneling ionization with a perturbation for the time-domain observation of an electric field) has been demonstrated for measuring linearly polarized few-cycle pulses. We theoretically and experimentally show that TIPTOE can be extended to resolve more characteristics of an optical waveform: the two-dimensional polarization and the Gouy phase. Based on the plasma fluorescence of a gaseous medium, we achieve all-optical and spatially resolved measurements of the waveform of an infrared pulse. This detection method enables the remote characterization of a waveform without the need to place an apparatus near the focal point of the laser beam. The proposed approach represents a simple and powerful method for conducting waveform diagnostics on few-cycle laser sources.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.