Abstract

The metrological capability of the picosecond four-wave mixing (FWM) technique for evaluation of the photoelectrical properties of GaN heterostructures grown on sapphire, silicon carbide, and silicon substrates as well as of free-standing GaN films is demonstrated. Carrier recombination and transport features have been studied in a wide excitation, temperature, and dislocation density (from ∼10 10 to 10 6 cm −2) range, exploring non-resonant refractive index modulation by a free carrier plasma. The studies allowed to establish the correlations between the dislocation density and the carrier lifetime, diffusion length, and stimulated emission threshold, to reveal a competition between the bimolecular and nonradiative recombination, and to verify the temperature dependence of bimolecular recombination coefficient in the 10–300 K temperature range. It was shown that the FWM technique is more advantageous than the time-resolved photoluminescence technique for determination of carrier lifetimes in high quality thick III–nitride layers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.