Abstract

Nucleic acid testing (NAT) is directly oriented to determining the genetic material of pathogens and is characterized by its high sensitivity and specificity, which are indispensable qualities in disease diagnosis. However, standard laboratory NAT methods require joint testing by highly trained inspectors using multiple instruments in professional laboratories. The entire process requires many manual steps, and the total testing time may range from 3 to 5 h, indicating that these methods cannot be used to realize the demands of on-site rapid testing. In this study, we propose a microfluidic chip for the on-site and rapid detection of nucleic acids. We utilize dynamic sealing, ultrasound, and advanced control methods and integrate the entire process of reagent pre-storage, extraction, Real-time Quantitative polymerase chain reaction (qPCR), and fluorescence detection. The sensitivity of this system is in line with current clinical standards, and the nucleic acid quantification process is completed fully automated within 30 min. Compared with conventional microfluidic chips, the proposed system has the advantages of high integration, low cost, and it may be produced at a high volume. Moreover, it can be used in a wide range of screening cases in the context of the COVID-19 pandemic and exhibits broad clinical application prospects.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.