Abstract
Magnetometers based on nitrogen-vacancy (NV) centers in diamonds have promising applications in fields of living systems biology, condensed matter physics, and industry. This paper proposes a portable and flexible all-fiber NV center vector magnetometer by using fibers to substitute all conventional spatial optical elements, realizing laser excitation and fluorescence collection of micro-diamond with multi-mode fibers simultaneously and efficiently. An optical model is established to investigate multi-mode fiber interrogation of micro-diamond to estimate the optical performance of NV center system. A new analysis method is proposed to extract the magnitude and direction of the magnetic field, combining the morphology of the micro-diamond, thus realizing μm-scale vector magnetic field detection at the tip of the fiber probe. Experimental testing shows our fabricated magnetometer has a sensitivity of 0.73 nT/Hz1/2, demonstrating its feasibility and performance in comparison with conventional confocal NV center magnetometers. This research presents a robust and compact magnetic endoscopy and remote-magnetic measurement approach, which will substantially promote the practical application of magnetometers based on NV centers.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.