Abstract

Self-assembled monolayers (SAMs) on Au(111) are able to control the functionality of a gold surface. We use scanning tunnelling microscopy (STM) in air and contact angle measurements to compare the morphology and the chemistry of three alkylthiol SAMs differing by their tail groups: 1,9-nonanedithiol (NDT), 1,4-butanedithiol (BDT) and 11-mercaptoundecanol (MUOH). STM reveals very different morphologies: a hexagonal lattice for MUOH and parallel rows for NDT and BDT. In the case of NDT, we find that the thiol tail groups may form disulfide bridges with long immersion times. The availability of the –SH group for chemical reactions is demonstrated by attaching gold nanoparticles (AuNPs). When the thiol tail group is available, AuNPs readily attach as shown with atomic force microscopy (AFM). When disulfide bridges are formed, the gold surface is not able to bind nanoparticles.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.