Abstract

Single-electron transfer (SET) oxidation of ionic hypervalent complexes, in particular alkyltrifluoroborates (Alkyl-BF3 - ) and alkylbis(catecholato)silicates (Alkyl-Si(cat)2 - ), have contributed substantially to alkyl radical generation compared to alkali or alkaline earth organometallics because of their excellent activity-stability balance. Herein, another proposal is reported by using neutral metalloid compounds, Alkyl-GeMe3 , as radical precursors. Alkyl-GeMe3 shows comparable activity to that of Alkyl-BF3 - and Alkyl-Si(cat)2 - in radical addition reactions. Moreover, Alkyl-GeMe3 is the first successful group 14 tetraalkyl nucleophile in nickel-catalyzed cross-coupling. Meanwhile, the neutral nature of these organogermanes offset the limitation of ionic precursors in purification and derivatization. A preliminary mechanism study suggests that an alkyl radical is generated from a tetraalkylgermane radical cation with the assistance of a nucleophile, which may also result in the development of more non-ionic alkyl radical precursors with a metalloid center.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.